Back to Search Start Over

Phonon Heat Conduction in Corrugated Silicon Nanowires Below the Casimir Limit

Authors :
Olivier Bourgeois
Ali Rajabpour
Thierry Fournier
Sebastian Volz
Christophe Blanc
Thermodynamique et biophysique des petits systèmes (TPS)
Institut Néel (NEEL)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Department of Mechanical Engineering
Imam Khomeini International University (IKIU)
Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C)
Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec
Nanofab (Nanofab)
Source :
Applied Physics Letters, Applied Physics Letters, American Institute of Physics, 2013, 103 (4), pp.043109. ⟨10.1063/1.4816590⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

hh; The thermal conductance of straight and corrugated monocrystalline silicon nanowires has been measured between 0.3~K and 5~K. The difference in the thermal transport between corrugated nanowires and straight ones demonstrates a strong reduction in the mean free path of the phonons. This averaged mean free path is remarkably smaller than the smaller diameter of the nanowire, evidencing a phonon thermal transport reduced below the Casimir limit. Monte Carlo simulations highlight that this effect can be attributed to significant multiple scattering of ballistic phonons occuring on the corrugated surfaces. This result suggests an original approach to transforming a monocrystalline material into a phonon glass.

Details

Language :
English
ISSN :
00036951
Database :
OpenAIRE
Journal :
Applied Physics Letters, Applied Physics Letters, American Institute of Physics, 2013, 103 (4), pp.043109. ⟨10.1063/1.4816590⟩
Accession number :
edsair.doi.dedup.....6f64f0e886597f50db2b2dd7146c0290