Back to Search
Start Over
Skutterudite thermoelectric modules with high volume-power-density: scalability and reproducibility
- Publication Year :
- 2018
- Publisher :
- American Chemical Society, 2018.
-
Abstract
- The construction and evaluation of wholly-skutterudite thermoelectric modules with a high volume-power-density is described. Such modules afford the maximum power output for the minimum use of material. Synthesis of the component n-type unfilled skutterudite CoSb2.75Sn0.05Te0.20 and p-type filled skutterudite Ce0.5Yb0.5Fe3.25Co0.75Sb12, was achieved using a scalable ball-milling route that provides sufficient material for the construction and assessment of performance of 12 modules. Impedance spectroscopy at room temperature is shown to provide a rapid means of evaluating the quality of module fabrication. The results show a high degree of reproducibility in module performance across the 12 modules, with an average internal resistance of 102(4) m. Electrical measurements on the component n- and p-type materials reveal power factors (S2σ) of 1.92 and 1.33 mW m-1 K-2, respectively, at room temperature and maximum figures of merit of ZT = 1.13 (n-type) and ZT = 0.91 (p-type) at 673 K and 823 K, respectively. The figure of merit of the module at room temperature (ZT = 0.12) is reduced by ca. 39% from the average of the n- and p-type component materials at the same temperature, as a result of thermal- and electrical-contact resistance losses associated with the architecture of the module. I-V curves for the module determined for T in the range 50 – 450 K show an almost linear dependence of the open-circuit voltage on T and allow calculation of the power output, which reaches a maximum value of 1.8 W (0.9 W cm-2) at T = 448 K.
- Subjects :
- Materials science
Maximum power principle
business.industry
Energy Engineering and Power Technology
02 engineering and technology
Internal resistance
engineering.material
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Thermoelectric generator
Materials Chemistry
Electrochemistry
engineering
Chemical Engineering (miscellaneous)
Optoelectronics
Figure of merit
Electrical measurements
Skutterudite
Electrical and Electronic Engineering
0210 nano-technology
business
Power density
Voltage
Subjects
Details
- Language :
- English
- ISSN :
- 25740962
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....6f4ca5181576aa614f91dc43c716fedc