Back to Search Start Over

Folic Acid Treatment Directly Influences the Genetic and Epigenetic Regulation along with the Associated Cellular Maintenance Processes of HT-29 and SW480 Colorectal Cancer Cell Lines

Authors :
Sára Zsigrai
Alexandra Kalmár
Barbara K. Barták
Zsófia B. Nagy
Krisztina A. Szigeti
Gábor Valcz
William Kothalawala
Titanilla Dankó
Anna Sebestyén
Gábor Barna
Orsolya Pipek
István Csabai
Zsolt Tulassay
Péter Igaz
István Takács
Béla Molnár
Source :
Cancers; Volume 14; Issue 7; Pages: 1820
Publication Year :
2022

Abstract

Folic acid (FA) is a synthetic form of vitamin B9, generally used as a nutritional supplement and an adjunctive medication in cancer therapy. FA is involved in genetic and epigenetic regulation; therefore, it has a dual modulatory role in established neoplasms. We aimed to investigate the effect of short-term (72 h) FA supplementation on colorectal cancer; hence, HT-29 and SW480 cells were exposed to different FA concentrations (0, 100, 10,000 ng/mL). HT-29 cell proliferation and viability levels elevated after 100 ng/mL but decreased for 10,000 ng/mL FA. Additionally, a significant (p ≤ 0.05) improvement of genomic stability was detected in HT-29 cells with micronucleus scoring and comet assay. Conversely, the FA treatment did not alter these parameters in SW480 samples. RRBS results highlighted that DNA methylation changes were bidirectional in both cells, mainly affecting carcinogenesis-related pathways. Based on the microarray analysis, promoter methylation status was in accordance with FA-induced expression alterations of 27 genes. Our study demonstrates that the FA effect was highly dependent on the cell type, which can be attributed to the distinct molecular background and the different expression of proliferation- and DNA-repair-associated genes (YWHAZ, HES1, STAT3, CCL2). Moreover, new aspects of FA-regulated DNA methylation and consecutive gene expression were revealed.

Details

ISSN :
20726694
Volume :
14
Issue :
7
Database :
OpenAIRE
Journal :
Cancers
Accession number :
edsair.doi.dedup.....6f0fd3805e7b2663e0177820cd7700b4