Back to Search
Start Over
Extra Invariance of Shift-Invariant Spaces on LCA Groups
- Source :
- J. Math. Anal. Appl. 2010;370(2):530-537, Biblioteca Digital (UBA-FCEN), Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales, instacron:UBA-FCEN, CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2009
-
Abstract
- Let G be an LCA group and K a closed subgroup of G. A closed subspace of L^2(G) is called K-invariant if it is invariant under translations by elements of K. Assume now that H is a countable uniform lattice in G and M is any closed subgroup of G containing H. In this article we study necessary and sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our results we prove that for each closed subgroup M of G containing the lattice H, there exists an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any other subgroup M' containing M. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant space, related to its M-invariance.<br />11 pages
- Subjects :
- Normal subgroup
Translation invariant space
Torsion subgroup
Matemáticas
Fitting subgroup
43A77, 43A15
Matemática Pura
purl.org/becyt/ford/1 [https]
Combinatorics
Subgroup
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
Shift-Invariant Space
Mathematics
Range functions
Applied Mathematics
Mathematical analysis
Translation-Invariant Space
purl.org/becyt/ford/1.1 [https]
Shift-invariant space
Invariant (physics)
LCA groups
Mathematics - Classical Analysis and ODEs
Fiber spaces
Coset
Index of a subgroup
Fiber Spaces
Analysis
CIENCIAS NATURALES Y EXACTAS
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- J. Math. Anal. Appl. 2010;370(2):530-537, Biblioteca Digital (UBA-FCEN), Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales, instacron:UBA-FCEN, CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....6f085ce39afe0a64397e25f00c00f143