Back to Search Start Over

Solving a wind turbine maintenance scheduling problem

Authors :
Jorge E. Mendoza
Eric Pinson
Louis-Martin Rousseau
Aurélien Froger
Michel Gendreau
Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS)
Université d'Angers (UA)
Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport (CIRRELT)
École Polytechnique de Montréal (EPM)-Université de Montréal (UdeM)-HEC Montréal (HEC Montréal)
Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Scheduling, Journal of Scheduling, Springer Verlag, 2018, 21 (1), pp.53-76. ⟨10.1007/s10951-017-0513-5⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Driven by climate change mitigation efforts, the wind energy industry has significantly increased in recent years. In this context, it is essential to make its exploitation cost-effective. Maintenance of wind turbines therefore plays an essential role reducing breakdowns and ensuring high productivity levels. In this paper we discuss a challenging maintenance scheduling problem rising in the onshore wind power industry. While the research in the field primarily focuses on condition-based maintenance strategies, we aim to address the problem on a short-term horizon considering wind predictions and fine-grained resource management. The objective is to find a maintenance plan that maximizes the revenue from the electricity production of the turbines while taking into account multiple task execution modes and task-technician assignment constraints. To solve this problem, we propose a constraint programming-based large neighborhood search (CPLNS) approach. We also propose two integer linear programming formulations that we solve using a commercial solver. We report results on randomly generated instances built with input from wind forecasting and maintenance scheduling software companies. The CPLNS shows an average gap of 1.2% with respect to the optimal solutions if known, or to the best upper bounds otherwise. These computational results demonstrate the overall efficiency of the proposed metaheuristic.

Details

Language :
English
ISSN :
10946136 and 10991425
Database :
OpenAIRE
Journal :
Journal of Scheduling, Journal of Scheduling, Springer Verlag, 2018, 21 (1), pp.53-76. ⟨10.1007/s10951-017-0513-5⟩
Accession number :
edsair.doi.dedup.....6f02c9ce6908086cd7da0b74781216ef
Full Text :
https://doi.org/10.1007/s10951-017-0513-5⟩