Back to Search
Start Over
Accurate Detection and Evaluation of the Gene-Editing Frequency in Plants Using Droplet Digital PCR
- Source :
- Frontiers in Plant Science, Frontiers in Plant Science, Vol 11 (2020)
- Publication Year :
- 2020
- Publisher :
- Frontiers Media SA, 2020.
-
Abstract
- Gene-editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been reported that detect mutations at targeted loci induced by the CRISPR/Cas system in different organisms, they are semiquantitative and have difficulty in the detection of mutants in processed food samples containing low initial concentrations of DNA and may not accurately quantify editing frequency, especially at very low frequencies in a complex polyploid plant genome. In this study, we developed a duplexed dPCR-based method for the detection and evaluation of gene-editing frequencies in plants. We described the design, performance, accurate quantification, and comparison with other detection systems. The results show that the dPCR-based method is sensitive to different kinds of gene-editing mutations induced by gene-editing. Moreover, the method is applicable to polyploid plants and processed food samples containing low initial concentrations of DNA. Compared with qPCR and NGS-based methods, the dPCR method has a lower limit of detection (LOD) of the editing frequency and a better relationship with the expected editing frequency in detecting the edited region of gene-edited rice samples. Taken together, the duplexed dPCR assay is accurate and precise, and it will be a powerful tool for the detection and evaluation of gene-editing frequencies in plants in gene-editing technology.
- Subjects :
- 0106 biological sciences
Mutant
Plant Science
Computational biology
lcsh:Plant culture
Biology
01 natural sciences
Genome
03 medical and health sciences
chemistry.chemical_compound
CRISPR/Cas
Genome editing
Polyploid
CRISPR
lcsh:SB1-1110
Digital polymerase chain reaction
Gene
Original Research
030304 developmental biology
0303 health sciences
gene editing
dPCR
chemistry
accurate detection
quantity analysis
DNA
010606 plant biology & botany
Subjects
Details
- ISSN :
- 1664462X
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Frontiers in Plant Science
- Accession number :
- edsair.doi.dedup.....6eead6c53e9c764476a087e71326110b
- Full Text :
- https://doi.org/10.3389/fpls.2020.610790