Back to Search Start Over

Unraveling the biology of a fungal meningitis pathogen using chemical genetics

Authors :
Raamesh Deshpande
Jessica C.S. Brown
Sarah Kagan
Arielle Butts
Hiten D. Madhani
Justin Nelson
Damian J. Krysan
Benjamin VanderSluis
Itzhack Polacheck
Chad L. Myers
Source :
Cell, vol 159, iss 5
Publication Year :
2014
Publisher :
eScholarship, University of California, 2014.

Abstract

Summary The fungal meningitis pathogen Cryptococcus neoformans is a central driver of mortality in HIV/AIDS. We report a genome-scale chemical genetic data map for this pathogen that quantifies the impact of 439 small-molecule challenges on 1,448 gene knockouts. We identified chemical phenotypes for 83% of mutants screened and at least one genetic response for each compound. C. neoformans chemical-genetic responses are largely distinct from orthologous published profiles of Saccharomyces cerevisiae , demonstrating the importance of pathogen-centered studies. We used the chemical-genetic matrix to predict novel pathogenicity genes, infer compound mode of action, and to develop an algorithm, O2M, that predicts antifungal synergies. These predictions were experimentally validated, thereby identifying virulence genes, a molecule that triggers G2/M arrest and inhibits the Cdc25 phosphatase, and many compounds that synergize with the antifungal drug fluconazole. Our work establishes a chemical-genetic foundation for approaching an infection responsible for greater than one-third of AIDS-related deaths. PaperClip

Details

Database :
OpenAIRE
Journal :
Cell, vol 159, iss 5
Accession number :
edsair.doi.dedup.....6ea9a6bae786381595484595e1224825