Back to Search
Start Over
Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling
- Source :
- Journal of Chemical Theory and Computation
- Publication Year :
- 2017
-
Abstract
- Relativistic effects significantly affect various spectroscopic properties of compounds containing heavy elements. Particularly in Nuclear Magnetic Resonance (NMR) spectroscopy, the heavy atoms strongly influence the NMR shielding constants of neighboring light atoms. In this account we analyze paramagnetic contributions to NMR shielding constants and their modulation by relativistic spin-orbit effects in a series of transition-metal complexes of Pt(II), Au(I), Au(III), and Hg(II). We show how the paramagnetic NMR shielding and spin-orbit effects relate to the character of the metal-ligand (M-L) bond. A correlation between the (back)-donation character of the M-L bond in d10 Au(I) complexes and the propagation of the spin-orbit (SO) effects from M to L through the M-L bond influencing the ligand NMR shielding via the Fermi-contact mechanism is found and rationalized by using third-order perturbation theory. The SO effects on the ligand NMR shielding are demonstrated to be driven by both the electronic structure of M and the nature of the trans ligand, sharing the σ-bonding metal orbital with the NMR spectator atom L. The deshielding paramagnetic contribution is linked to the σ-type M-L bonding orbitals, which are notably affected by the trans ligand. The SO deshielding role of σ-type orbitals is enhanced in d10 Hg(II) complexes with the Hg 6p atomic orbital involved in the M-L bonding. In contrast, in d8 Pt(II) complexes, occupied π-type orbitals play a dominant role in the SO-altered magnetic couplings due to the accessibility of vacant antibonding σ-type MOs in formally open 5d-shell (d8). This results in a significant SO shielding at the light atom. The energy- and composition-modulation of σ- vs π-type orbitals by spin-orbit coupling is rationalized and supported by visualizing the SO-induced changes in the electron density around the metal and light atoms (spin-orbit electron deformation density, SO-EDD). © 2017 American Chemical Society.<br />Czech Science Foundation [16-05961S, 15-09381S]; Ministry of Education, Youth and Sports of the Czech Republic [LQ1601, LO1504]; multilateral cooperation project [8X17009]; SASPRO Program [1563/03/02]; European Union; Slovak Academy of Sciences; Grant Agency of the Ministry of Education of the Slovak Republic; Slovak Academy of Sciences VEGA [2/0116/17]; Research Council of Norway [179568]; Norwegian supercomputing program NOTUR [NN4654K]
- Subjects :
- 010304 chemical physics
VDP::Mathematics and natural science: 400::Chemistry: 440
Chemistry
Carbon-13 NMR satellite
Chemical shift
Nuclear magnetic resonance spectroscopy
Spin–orbit interaction
Carbon-13 NMR
010402 general chemistry
01 natural sciences
0104 chemical sciences
Computer Science Applications
Crystallography
Paramagnetism
Transition metal
Computational chemistry
VDP::Matematikk og Naturvitenskap: 400::Kjemi: 440
0103 physical sciences
Condensed Matter::Strongly Correlated Electrons
Physical and Theoretical Chemistry
Spectroscopy
Subjects
Details
- ISSN :
- 15499626
- Volume :
- 13
- Issue :
- 8
- Database :
- OpenAIRE
- Journal :
- Journal of chemical theory and computation
- Accession number :
- edsair.doi.dedup.....6e9e4774a7911ba1a5e518a5a3fd0735