Back to Search Start Over

Revealing Neural Circuit Topography in Multi-Color

Authors :
Roy V. Sillitoe
Nika Filatova
Samrawit A. Gebre
Stacey L. Reeber
Source :
Journal of Visualized Experiments.
Publication Year :
2011
Publisher :
MyJove Corporation, 2011.

Abstract

Neural circuits are organized into functional topographic maps. In order to visualize complex circuit architecture we developed an approach to reliably label the global patterning of multiple topographic projections. The cerebellum is an ideal model to study the orderly arrangement of neural circuits. For example, the compartmental organization of spinocerebellar mossy fibers has proven to be an indispensable system for studying mossy fiber patterning. We recently showed that wheat germ agglutinin (WGA) conjugated to Alexa 555 and 488 can be used for tracing spinocerebellar mossy fiber projections in developing and adult mice (Reeber et al. 2011). We found three major properties that make the WGA-Alexa tracers desirable tools for labeling neural projections. First, Alexa fluorophores are intense and their brightness allows for wholemount imaging directly after tracing. Second, WGA-Alexa tracers label the entire trajectory of developing and adult neural projections. Third, WGA-Alexa tracers are rapidly transported in both retrograde and anterograde directions. Here, we describe in detail how to prepare the tracers and other required tools, how to perform the surgery for spinocerebellar tracing and how best to image traced projections in three dimensions. In summary, we provide a step-by-step tracing protocol that will be useful for deciphering the organization and connectivity of functional maps not only in the cerebellum but also in the cortex, brainstem, and spinal cord.

Details

ISSN :
1940087X
Database :
OpenAIRE
Journal :
Journal of Visualized Experiments
Accession number :
edsair.doi.dedup.....6e61fc2a675cd5f67cdbf922b927189f
Full Text :
https://doi.org/10.3791/3371