Back to Search Start Over

Dynamics of explosive paroxysms at open-vent andesitic systems : High-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador)

Authors :
Julia Eychenne
Hugo Yepes
Patricio Ramón
Jean-Luc Le Pennec
Laboratoire Magmas et Volcans (LMV)
Observatoire de Physique du Globe de Clermont-Ferrand (OPGC)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
instituto Geofísico
Escuela Politécnica Nacional (EPN)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Earth and Planetary Science Letters, Earth and Planetary Science Letters, 2013, 361, pp.343-355. ⟨10.1016/j.epsl.2012.11.002⟩, Earth and Planetary Science Letters, Elsevier, 2013, 361, pp.343-355. ⟨10.1016/j.epsl.2012.11.002⟩
Publication Year :
2013

Abstract

Long-lasting andesitic eruptions sometimes include strong short-lived explosive events, which can pose significant hazards in populated regions. The origin and dynamics of such violent eruptions remain poorly known and may involve a combination of different factors. Tungurahua volcano, Ecuador, reawakens in 1999 and is an example of such an open-vent system that experienced a strong and deadly andesitic pyroclastic flow-forming event in August 2006. Inspection of the deposits suggested that the event could have been triggered by magma mixing (coexistence of both silicic pumices and andesitic scoria in the tephra), magma-water interaction (presence of xenolithic clasts) or deep andesitic magma reinjection (based on mineral chemistry). Here we investigate these options by performing a high-resolution mass budget analysis of the scoria fall deposit. This is achieved by analysing componentry compositions and their mass distribution pattern in the layer, which allow us to document and integrate exponential and power laws mass decay rates over wide areas. The results yield a total mass for the tephra layer of similar to 2 x 10(10) kg. The pumice mass fraction is far too small (

Details

ISSN :
0012821X
Database :
OpenAIRE
Journal :
Earth and Planetary Science Letters, Earth and Planetary Science Letters, 2013, 361, pp.343-355. ⟨10.1016/j.epsl.2012.11.002⟩, Earth and Planetary Science Letters, Elsevier, 2013, 361, pp.343-355. ⟨10.1016/j.epsl.2012.11.002⟩
Accession number :
edsair.doi.dedup.....6e4d5075f7d1c9569c6e38c35dc28d4e