Back to Search
Start Over
The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer
- Source :
- Ground water. 48(2)
- Publication Year :
- 2009
-
Abstract
- A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity phi, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and phi, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity alpha that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of alpha, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of varphi on K.
- Subjects :
- geography
geography.geographical_feature_category
Well logging
Aquifer
Conductivity
Models, Theoretical
Topology
Silicon Dioxide
Hydraulic conductivity
Water Supply
Fluid dynamics
Water Movements
Computers in Earth Sciences
Porosity
Groundwater model
Groundwater
Geology
Water Science and Technology
Subjects
Details
- ISSN :
- 17456584
- Volume :
- 48
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Ground water
- Accession number :
- edsair.doi.dedup.....6e1d89c4cb0a0372eb572b4c48cf1b5d