Back to Search
Start Over
A Regional NWP Tropospheric Delay Inversion Method Based on a General Regression Neural Network Model
- Source :
- Sensors, Volume 20, Issue 11, Sensors (Basel, Switzerland), Sensors, Vol 20, Iss 3167, p 3167 (2020)
- Publication Year :
- 2020
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2020.
-
Abstract
- Tropospheric delay is a major error source that affects the initialization and re-initialization speed of the Global Navigation Satellite System&rsquo<br />s (GNSS) medium-/long-range baseline in Network Real-Time Kinematic (NRTK) positioning. Fusing the meteorological data from the Numerical Weather Prediction (NWP) model to estimate the zenith tropospheric delay (ZTD) is one of the current research hotspots. However, research has shown that the ZTD derived from NWP models is still not accurate enough for high-precision GNSS positioning applications without the estimation of the residual tropospheric delay. To date, General Regression Neural Network (GRNN) has been applied in many fields. It has a high learning speed and simple structure, and can approximate any function with arbitrary precision. In this study, we developed a regional NWP tropospheric delay inversion method based on a GRNN model to improve the accuracy of the tropospheric delay derived from the NWP model. The accuracy of the tropospheric delays derived from reanalysis data of the European Center for Medium-Range Weather Forecasts (ECMWF) and the US National Centers for Environmental Prediction (NCEP) was assessed through comparisons with the results of the International GPS Service (IGS). The variation characteristics of the residual of the ZTD inverted by NWP data were analyzed considering the factors of temperature, humidity, latitude, and season. To evaluate the performance of this new method, the National Center Atmospheric Research (NCAR) troposphere data of 650 stations in Japan in 2005 were collected as a reference to compare the accuracy of the ZTD before and after using the new method. The experimental results showed that the GRNN model has obvious advantages in fitting the NWP ZTD residual. The mean residual and the root mean square deviation (RMSD) of the ZTD inverted using the method of this study were 9.5 mm and 12.7 mm, respectively, showing reductions of 20.8% and 19.1%, respectively, as compared to the standard NWP model. For long-range baseline (155 km and 207 km), the corrected NWP-constrained RTK showed a reduction of over 43% in the initialization time compared with the standard RTK, and showed a reduction of over 24% in the initialization time compared with the standard NWP-constrained RTK.
- Subjects :
- 010504 meteorology & atmospheric sciences
Meteorology
0211 other engineering and technologies
GRNN
Initialization
Inverse transform sampling
02 engineering and technology
lcsh:Chemical technology
Residual
01 natural sciences
Biochemistry
Article
Analytical Chemistry
Troposphere
lcsh:TP1-1185
NWP
Electrical and Electronic Engineering
Instrumentation
Root-mean-square deviation
021101 geological & geomatics engineering
0105 earth and related environmental sciences
GNSS
business.industry
Numerical weather prediction
tropospheric delay
Atomic and Molecular Physics, and Optics
GNSS applications
Global Positioning System
Environmental science
business
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Database :
- OpenAIRE
- Journal :
- Sensors
- Accession number :
- edsair.doi.dedup.....6df1d82b6f9d82766539b82b8f463a53
- Full Text :
- https://doi.org/10.3390/s20113167