Back to Search Start Over

Universality in the spectral and eigenfunction properties of random networks

Authors :
A. Alcazar-Lopez
A. J. Martinez-Mendoza
Francisco A. Rodrigues
J. A. Méndez-Bermúdez
Thomas K. Dm. Peron
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2015

Abstract

By the use of extensive numerical simulations we show that the nearest-neighbor energy level spacing distribution $P(s)$ and the entropic eigenfunction localization length of the adjacency matrices of Erd\H{o}s-R\'enyi (ER) {\it fully} random networks are universal for fixed average degree $\xi\equiv \alpha N$ ($\alpha$ and $N$ being the average network connectivity and the network size, respectively). We also demonstrate that Brody distribution characterizes well $P(s)$ in the transition from $\alpha=0$, when the vertices in the network are isolated, to $\alpha=1$, when the network is fully connected. Moreover, we explore the validity of our findings when relaxing the randomness of our network model and show that, in contrast to standard ER networks, ER networks with {\it diagonal disorder} also show universality. Finally, we also discuss the spectral and eigenfunction properties of small-world networks.<br />Comment: 11 pages, 9 figures

Details

Database :
OpenAIRE
Journal :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....6da9acc05a6fba19b3cee8fa5c88bb3f