Back to Search Start Over

Load bearing performance of mechanical joints inspired by elbow of quadrupedal mammals

Authors :
Aliona Sanz-Idirin
Jean-Marc Linares
Pedro José Arrazola
Santiago Arroyave-Tobón
Institut des Sciences du Mouvement Etienne Jules Marey (ISM)
Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Mondragon Unibertsitatea
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Bioinspiration and Biomimetics, Bioinspiration and Biomimetics, IOP Publishing, 2021, ⟨10.1088/1748-3190/abeb57⟩, Bioinspiration and Biomimetics, 2021, ⟨10.1088/1748-3190/abeb57⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; One of the biggest issues of the mechanical cylindrical joints is related to premature wear appearing. This application of bioinspiration principles in an engineering context taking advantage of smart solutions offered by nature in terms of kinematic joints could be a way of solving those problems. This work is focused on joints of one DOF in rotation (revolute or ginglymus joints in biological terms), as this is one of the most common type of mechanical joints. This type of joints can be found in the elbow of some quadrupedal mammals. The articular morphology of the elbow of these animals differs in the presence/absence of a trochlear sulcus. In this study, bio-inspired mechanical joints based on these morphologies (with/without trochlear sulcus) were designed and numerically tested. Their load bearing performance was numerically analysed. This was done through contact simulations using the finite element method under different external loading conditions (axial load, radial load and turnover moment). Results showed that the tested morphologies behave differently in transmission of external mechanical loads. It was found that bio-inspired joints without trochlea sulcus showed to be more specialized in the bearing of turnover moments. Bioinspired joints with trochlea sulcus are more suitable for supporting combined loads (axial and radial load and turnover moments). Learning about the natural rules of mechanical design can provide new insights to improve the design of current mechanical joints.

Details

Language :
English
ISSN :
17483182 and 17483190
Database :
OpenAIRE
Journal :
Bioinspiration and Biomimetics, Bioinspiration and Biomimetics, IOP Publishing, 2021, ⟨10.1088/1748-3190/abeb57⟩, Bioinspiration and Biomimetics, 2021, ⟨10.1088/1748-3190/abeb57⟩
Accession number :
edsair.doi.dedup.....6d6263aa22f52bb5ebf8d88eef288039
Full Text :
https://doi.org/10.1088/1748-3190/abeb57⟩