Back to Search Start Over

Global uniqueness in an inverse problem for time fractional diffusion equations

Authors :
Eric Soccorsi
Yavar Kian
Lauri Oksanen
Masahiro Yamamoto
Université de Toulon (UTLN)
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
CPT - E8 Dynamique quantique et analyse spectrale
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
University College of London [London] (UCL)
The University of Tokyo (UTokyo)
Source :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2018, 264 (2), pp.1146-1170. ⟨10.1016/j.jde.2017.09.032⟩, Journal of Differential Equations, 2018, 264 (2), pp.1146-1170. ⟨10.1016/j.jde.2017.09.032⟩
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Given ( M , g ) , a compact connected Riemannian manifold of dimension d ⩾ 2 , with boundary ∂M, we consider an initial boundary value problem for a fractional diffusion equation on ( 0 , T ) × M , T > 0 , with time-fractional Caputo derivative of order α ∈ ( 0 , 1 ) ∪ ( 1 , 2 ) . We prove uniqueness in the inverse problem of determining the smooth manifold ( M , g ) (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solutions on a subset of ∂M at fixed time. In the “flat” case where M is a compact subset of R d , two out the three coefficients ρ (density), a (conductivity) and q (potential) appearing in the equation ρ ∂ t α u − div ( a ∇ u ) + q u = 0 on ( 0 , T ) × M are recovered simultaneously.

Details

ISSN :
00220396 and 10902732
Volume :
264
Database :
OpenAIRE
Journal :
Journal of Differential Equations
Accession number :
edsair.doi.dedup.....6cf2e433206f52d4f7aba5986500e9a7
Full Text :
https://doi.org/10.1016/j.jde.2017.09.032