Back to Search Start Over

Parallel Beam Search for Combinatorial Optimization

Authors :
Frohner, Nikolaus
Gmys, Jan
Melab, Nouredine
Raidl, Günther
Talbi, El-Ghazali
Vienna University of Technology (TU Wien)
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Optimisation de grande taille et calcul large échelle (BONUS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Technische Universität Wien
Gmys, Jan
Source :
Proceedings of the International Symposium on Combinatorial Search, https://ojs.aaai.org/index.php/SOCS/article/view/21783, SoCS 2022-15th International Symposium on Combinatorial Search, SoCS 2022-15th International Symposium on Combinatorial Search, Jul 2022, Vienne, Austria. ⟨10.1609/socs.v15i1.21783⟩, International Workshop on Parallel and Distributed Algorithms and Decision Sciences (PDADS 2022), International Workshop on Parallel and Distributed Algorithms and Decision Sciences (PDADS 2022), Aug 2022, Bordeaux, France
Publication Year :
2022
Publisher :
ACM, 2022.

Abstract

International audience; Inspired by the recent success of parallelized exact methods to solve difficult scheduling problems, we present a general parallel beam search framework for combinatorial optimization problems. Beam search is a constructive metaheuristic traversing a search tree layer by layer while keeping in each layer a bounded number of promising nodes to consider many partial solutions in parallel. We propose a variant which is suitable for intra-node parallelization by multithreading with data parallelism. Diversification and inter-node parallelization are combined by performing multiple randomized runs on independent workers communicating via MPI. For sufficiently large problem instances and beam widths our pro-totypical implementation in the JIT-compiled Julia language admits speed-ups between 30 − 42× on 46 cores with uniform memory access for two difficult classical problems, namely Permutation Flow Shop Scheduling (PFSP) with flowtime objective and the Traveling Tournament Problem (TTP). This allowed us to perform large beam width runs to find 11 new best feasible solutions for 22 difficult TTP benchmark instances up to 20 teams with an average wallclock runtime of about one hour per instance.

Details

Database :
OpenAIRE
Journal :
Workshop Proceedings of the 51st International Conference on Parallel Processing
Accession number :
edsair.doi.dedup.....6ce1fd103569efc998a033af7075077e