Back to Search Start Over

Gallium Selenide Nanoribbons on Silicon Substrates for Photodetection

Authors :
Mickael Martin
Farzan Gity
J. Moeyaert
Bérangère Hyot
Thierry Baron
Paul K. Hurley
Shubhadeep Bhattacharjee
Hanako Okuno
Denis Rouchon
Pauline Hauchecorne
Laboratoire des technologies de la microélectronique (LTM )
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Tyndall National Institute [Cork]
Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA )
Modélisation et Exploration des Matériaux (MEM)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Département Plate-Forme Technologique (DPFT)
Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI)
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Université Grenoble Alpes (UGA)
IBM Zurich Research Laboratory
IBM
Source :
ACS Applied Nano Materials, ACS Applied Nano Materials, American Chemical Society, 2021, 4 (8), pp.7820-7831. ⟨10.1021/acsanm.1c01141⟩, ACS Applied Nano Materials, 2021, 4 (8), pp.7820-7831. ⟨10.1021/acsanm.1c01141⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Layered semiconductor gallium selenide (GaSe) is considered a potential candidate for optoelectronic applications because of its direct band gap. Monocrystalline material is, however, a prerequisite to fully exploit these properties in devices, where one-dimensional nano-objects could be considered as a model system. As a consequence of their large surface-to-volume ratio, nano-objects such as nanoribbons are interesting for photodetection applications. Here, we report the vapor–liquid–solid growth of GaSe nanoribbons by MOCVD on 300 mm silicon substrates. A growth model is proposed on the basis of a comprehensive study of the impact of the growth parameters on the nanoribbon morphology. The nanoribbon microstructure is investigated by HR-STEM and Raman spectroscopy characterizations. HR-STEM and TEM cross-sectional observations coupled with EDX analyses reveal a monocrystalline nanoribbon core covered with a native gallium-oxide shell. Test devices are made by contacting individual nanoribbon. The current versus voltage (I–V) characteristic obtained over a range of temperature (−50 to 100 °C) in the dark and under white light illumination is fitted on the basis of a back-to-back Schottky diode model. A stable and repeatable dynamic photoresponse is measured from the GaSe nanoribbons, with an ION/IOFF ratio of 17 at room temperature.

Details

Language :
English
ISSN :
25740970
Database :
OpenAIRE
Journal :
ACS Applied Nano Materials, ACS Applied Nano Materials, American Chemical Society, 2021, 4 (8), pp.7820-7831. ⟨10.1021/acsanm.1c01141⟩, ACS Applied Nano Materials, 2021, 4 (8), pp.7820-7831. ⟨10.1021/acsanm.1c01141⟩
Accession number :
edsair.doi.dedup.....6cbe0f042da206434848b4b8b5e715d6