Back to Search
Start Over
Heat and mass transfer coefficients of falling-film absorption on a partially wetted horizontal tube
- Source :
- International Journal of Thermal Sciences. 126:56-66
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Detailed, reliable, and time-saving methods to predict the transfer characteristics of horizontal-tube falling-film absorbers are critical to control system operability, such that it is closer to its technical limitations, and to optimise increasingly complex configurations. In this context, analytical approaches continue to hold their fundamental importance. This study presents an analytical solution of the governing transport equations of film absorption around a partially wetted tube. A film stability criterion and a wettability model extend the validity range of the resulting solution and increase its accuracy. Temperature and mass fraction fields are analytically expressed as functions of Prandtl, Schmidt, and Reynolds numbers as well as tube dimensionless diameter and wetting ratio of the exchange surface. Inlet conditions are arbitrary. The Lewis number and a dimensionless heat of absorption affect the characteristic equation and the corresponding eigenvalues. Consequently, local and average transfer coefficients are estimated and discussed with reference to the main geometrical and operative parameters. Finally, a first comparison with the numerical solution of the problem and experimental data from previous literature is presented to support the simplifying assumptions, which are introduced and as a first model validation.
- Subjects :
- Materials science
Stability criterion
020209 energy
Prandtl number
General Engineering
Characteristic equation
Reynolds number
Assorbimento a film cadente, Falling film absorption, Bagnabilità parziale, Partial wetting, Scambio termico e di massa, Heat and mass transfer coefficients
Context (language use)
02 engineering and technology
Mechanics
Condensed Matter Physics
Lewis number
symbols.namesake
020401 chemical engineering
Mass transfer
0202 electrical engineering, electronic engineering, information engineering
symbols
0204 chemical engineering
Dimensionless quantity
Subjects
Details
- ISSN :
- 12900729
- Volume :
- 126
- Database :
- OpenAIRE
- Journal :
- International Journal of Thermal Sciences
- Accession number :
- edsair.doi.dedup.....6ca9cec94f4a9d86cc0e7f29269f407b
- Full Text :
- https://doi.org/10.1016/j.ijthermalsci.2017.12.020