Back to Search Start Over

Anticonvulsant effect of dipropofol by enhancing native GABA currents in cortical neurons in mice

Authors :
An Long
Matti Kårbø
Rutao Wang
KeWei Wang
Zhuo Huang
Xiaoling Chen
Zhao Yi
Jingliang Zhang
Source :
Journal of Neurophysiology. 120:1404-1414
Publication Year :
2018
Publisher :
American Physiological Society, 2018.

Abstract

Temporal lobe epilepsy (TLE), the most common pharmacoresistant focal epilepsy disorder, remains a major unmet medical need. Propofol is used as a short-acting medication for general anesthesia and refractory status epilepticus with issues of decreased consciousness and memory loss. Dipropofol, a derivative of propofol, has been reported to exert antioxidative and antibacterial activities. Here we report that dipropofol exerted anticonvulsant activity in a mouse model of kainic acid-induced seizures. Whole cell patch-clamp recordings of brain slices from the medial entorhinal cortex (mEC) revealed that dipropofol hyperpolarized the resting membrane potential and reduced the number of action potential firings, resulting in suppression of cortical neuronal excitability. Furthermore, dipropofol activated native tonic GABAA currents of mEC layer II stellate neurons in a dose-dependent manner with an EC50 value of 9.3 ± 1.6 μM (mean ± SE). Taken together, our findings show that dipropofol activated GABAA currents and exerted anticonvulsant activities in mice, thus possessing developmental potential for new anticonvulsant therapy. NEW & NOTEWORTHY The anticonvulsant effect of dipropofol was shown in a mouse model of kainic acid-induced seizures. Whole cell patch-clamp recordings of brain slices showed suppression of cortical neuronal excitability by dipropofol. Dipropofol activated the native tonic GABAA currents in a dose-dependent manner.

Details

ISSN :
15221598 and 00223077
Volume :
120
Database :
OpenAIRE
Journal :
Journal of Neurophysiology
Accession number :
edsair.doi.dedup.....6ca550be61746f5a12259e7e90a2885d