Back to Search Start Over

A Lyman-alpha transit left undetected: the environment and atmospheric behavior of K2-25b

Authors :
Vincent Bourrier
Keighley Rockcliffe
Zachory K. Berta-Thompson
Allison Youngblood
David Charbonneau
Marcel A. Agüeros
Alejandro Núñez
Andrew W. Mann
Elisabeth R. Newton
Publication Year :
2021

Abstract

K2-25b is a Neptune-sized exoplanet (3.45 Earth radii) that orbits its M4.5 host with a period of 3.48 days. Due to its membership in the Hyades Cluster, the system has a known age (727 +/- 75 Myr). K2-25b's youth and its similarities with Gl 436b suggested that K2-25b could be undergoing strong atmospheric escape. We observed two transits of K2-25b at Lyman-alpha using HST/STIS in order to search for escaping neutral hydrogen. We were unable to detect an exospheric signature, but placed an upper limit of (R_p/R_s) < 0.56 at 95% confidence by fitting the light curve of the Lyman-alpha red-wing, or < 1.20 in the blue-wing. We reconstructed the intrinsic Lyman-alpha profile of K2-25 to determine its Lyman-alpha flux, and analyzed XMM-Newton observations to determined its X-ray flux. Based on the total X-ray and extreme ultraviolet irradiation of the planet (8763 +/- 1049 erg/s/cm^2), we estimated the maximum energy-limited mass loss rate of K2-25b to be 10.6 x 10^10 g/s (0.56 Earth masses per 1 Gyr), five times larger than the similarly estimated mass loss rate of Gl 436b (2.2 x 10^10 g/s). The photoionization time is about 3 hours, significantly shorter than Gl 436b's 14 hours. A non-detection of a Lyman-alpha transit could suggest K2-25b is not significantly losing its atmosphere, or factors of the system are resulting in the mass loss being unobservable (e.g., atmosphere composition or the system's large high energy flux). Further observations could provide more stringent constraints.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....6c866a0b81903b85f60f4ac540a0e3dd