Back to Search Start Over

Generation of Knock-out Primary and Expanded Human NK Cells Using Cas9 Ribonucleoproteins

Authors :
Dean A. Lee
K. John McLaughlin
Nitin Chakravarti
Margaret Lamb
Robin J. Nakkula
Aarohi Thakkar
Jena E. Moseman
Jennifer A. Foltz
Ezgi Elmas
Syed-Rehan A. Hussain
Prashant Trikha
Hamid Dolatshad
Meisam Naeimi Kararoudi
Source :
J Vis Exp
Publication Year :
2018

Abstract

CRISPR/Cas9 technology is accelerating genome engineering in many cell types, but so far, gene delivery and stable gene modification have been challenging in primary NK cells. For example, transgene delivery using lentiviral or retroviral transduction resulted in a limited yield of genetically-engineered NK cells due to substantial procedure-associated NK cell apoptosis. We describe here a DNA-free method for genome editing of human primary and expanded NK cells using Cas9 ribonucleoprotein complexes (Cas9/RNPs). This method allowed efficient knockout of the TGFBR2 and HPRT1 genes in NK cells. RT-PCR data showed a significant decrease in gene expression level, and a cytotoxicity assay of a representative cell product suggested that the RNP-modified NK cells became less sensitive to TGFβ. Genetically modified cells could be expanded post-electroporation by stimulation with irradiated mbIL21-expressing feeder cells.

Details

ISSN :
1940087X
Issue :
136
Database :
OpenAIRE
Journal :
Journal of visualized experiments : JoVE
Accession number :
edsair.doi.dedup.....6c832caa6d3d7ec95c08ae42368bba10