Back to Search Start Over

321-avoiding affine permutations and their many heaps

Authors :
Riccardo Biagioli
Philippe Nadeau
Frédéric Jouhet
Biagioli R
Jouhet F
Nadeau P
Combinatoire, théorie des nombres (CTN)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Combinatorial Theory, Series A, Journal of Combinatorial Theory, Series A, Elsevier, 2019, 162, pp.271-305. ⟨10.1016/j.jcta.2018.11.002⟩
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

We study $321$-avoiding affine permutations, and prove a formula for their enumeration with respect to the inversion number by using a combinatorial approach. This is done in two different ways, both related to Viennot's theory of heaps. First, we encode these permutations using certain heaps of monomers and dimers. This method specializes to the case of affine involutions. For the second proof, we introduce periodic parallelogram polyominoes, which are new combinatorial objects of independent interest. We enumerate them by extending the approach of Bousquet-M\'elou and Viennot used for classical parallelogram polyominoes. We finally establish a connection between these new objects and $321$-avoiding affine permutations.<br />Comment: 25 pages, 17 figures

Details

ISSN :
00973165 and 10960899
Volume :
162
Database :
OpenAIRE
Journal :
Journal of Combinatorial Theory, Series A
Accession number :
edsair.doi.dedup.....6c76825a0092a23ebe9d24aa97d4879e
Full Text :
https://doi.org/10.1016/j.jcta.2018.11.002