Back to Search
Start Over
Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions
- Source :
- EPJ Web of Conferences, Vol 26, p 01051 (2012)
- Publication Year :
- 2012
- Publisher :
- EDP Sciences, 2012.
-
Abstract
- The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1–4], the degradation of the yarns during the weaving process [5–7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a classical vacuum resin infusion; the second used a press in order to reach a resin ratio near to the existing protection. The existing protection is a prepreg structure with a fibre content of 88%. It has been revealed that a resin rate less than 35% inside the warp interlocks composite material leads to have equivalent ballistics performances than existing protection.
Details
- ISSN :
- 2100014X
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- EPJ Web of Conferences
- Accession number :
- edsair.doi.dedup.....6c6a80141554ddb4244c0f353c16dcb7