Back to Search Start Over

Downscaling land-use data to provide global 30″ estimates of five land-use classes

Authors :
Tom Harwood
Chris Ware
Andrew J. Hoskins
Alex Bush
Lawrence N. Hudson
Kristen J. Williams
Simon Ferrier
James Gilmore
Source :
Ecology and Evolution
Publication Year :
2016

Abstract

Land‐use change is one of the biggest threats to biodiversity globally. The effects of land use on biodiversity manifest primarily at local scales which are not captured by the coarse spatial grain of current global land‐use mapping. Assessments of land‐use impacts on biodiversity across large spatial extents require data at a similar spatial grain to the ecological processes they are assessing. Here, we develop a method for statistically downscaling mapped land‐use data that combines generalized additive modeling and constrained optimization. This method was applied to the 0.5° Land‐use Harmonization data for the year 2005 to produce global 30″ (approx. 1 km2) estimates of five land‐use classes: primary habitat, secondary habitat, cropland, pasture, and urban. The original dataset was partitioned into 61 bio‐realms (unique combinations of biome and biogeographical realm) and downscaled using relationships with fine‐grained climate, land cover, landform, and anthropogenic influence layers. The downscaled land‐use data were validated using the PREDICTS database and the geoWiki global cropland dataset. Application of the new method to all 61 bio‐realms produced global fine‐grained layers from the 2005 time step of the Land‐use Harmonization dataset. Coarse‐scaled proportions of land use estimated from these data compared well with those estimated in the original datasets (mean R 2: 0.68 ± 0.19). Validation with the PREDICTS database showed the new downscaled land‐use layers improved discrimination of all five classes at PREDICTS sites (P

Details

Language :
English
Database :
OpenAIRE
Journal :
Ecology and Evolution
Accession number :
edsair.doi.dedup.....6c3efaba00f878fe8359a9612eed0508
Full Text :
https://doi.org/10.1002/ece3.2104