Back to Search Start Over

Red nuggets grow inside-out: evidence from gravitational lensing

Authors :
Matthew W. Auger
Christopher D. Fassnacht
Brendon J. Brewer
Tommaso Treu
David J. Lagattuta
Lindsay Oldham
Léon V. E. Koopmans
Philip J. Marshall
Simona Vegetti
John McKean
Astronomy
Centre de Recherche Astrophysique de Lyon (CRAL)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Monthly Notices of the Royal Astronomical Society, 465(3), 3185-3202. Oxford University Press, Monthly Notices of the Royal Astronomical Society, Monthly Notices of the Royal Astronomical Society, 2017, 465, pp.3185-3202. ⟨10.1093/mnras/stw2832⟩
Publication Year :
2017
Publisher :
Oxford University Press, 2017.

Abstract

We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from HST/ACS and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts $0.4 \lesssim z \lesssim 0.7$, lying systematically below the size-mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly-evolved descendants. We exploit the magnifying effect of lensing to investigate the structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two S\'ersic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. We also find that the sources can be characterised by red-to-blue colour gradients as a function of radius which are stronger at low redshift -- indicative of ongoing accretion -- but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are predominantly associated with clusters.<br />Comment: 21 pages; accepted for publication in MNRAS

Details

Language :
English
ISSN :
13652966 and 00358711
Volume :
465
Issue :
3
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society
Accession number :
edsair.doi.dedup.....6c33bea7db5a0534a4b3be2c21f3dfb4