Back to Search Start Over

Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

Authors :
Meisel, Z.
George, S.
Ahn, S.
Bazin, D.
Brown, B. A.
Browne, J.
Carpino, J. F.
Chung, H.
Cyburt, R. H.
Estrad��, A.
Famiano, M.
Gade, A.
Langer, C.
Mato��, M.
Mittig, W.
Montes, F.
Morrissey, D. J.
Pereira, J.
Schatz, H.
Schatz, J.
Scott, M.
Shapira, D.
Sieja, K.
Smith, K.
Stevens, J.
Tan, W.
Tarasov, O.
Towers, S.
Wimmer, K.
Winkelbauer, J. R.
Yurkon, J.
Zegers, R. G. T.
Institut Pluridisciplinaire Hubert Curien (IPHC)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Université de Strasbourg (UNISTRA)
Source :
Physical Review C, Physical Review C, American Physical Society, 2016, 93 (3), ⟨10.1103/PhysRevC.93.035805⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric chain, resulting in a cooler than expected accreted neutron star crust. This reduced heating is found to be due to the >1-MeV reduction in binding for 64Cr with respect to values from commonly used global mass models.<br />Accepted to Physical Review C

Details

Language :
English
ISSN :
24699985 and 24699993
Database :
OpenAIRE
Journal :
Physical Review C, Physical Review C, American Physical Society, 2016, 93 (3), ⟨10.1103/PhysRevC.93.035805⟩
Accession number :
edsair.doi.dedup.....6c137c5a70ad93f5b3da6f56e07cf11d
Full Text :
https://doi.org/10.1103/PhysRevC.93.035805⟩