Back to Search Start Over

Stimulation of phosphoinositide hydrolysis by oxytocin and the mechanism by which oxytocin controls prostaglandin synthesis in the ovine endometrium

Authors :
E L Sheldrick
Anthony P.F. Flint
H J Stewart
W M F Leat
Source :
Biochemical Journal. 237:797-805
Publication Year :
1986
Publisher :
Portland Press Ltd., 1986.

Abstract

Slices of caruncular endometrium from steroid-treated ovariectomized sheep were incubated with myo-[2-3H]inositol to label tissue phosphatidylinositol. Effects of oxytocin were determined on the rate of incorporation of radioactivity into phosphatidylinositol and on the hydrolysis of phosphoinositides to inositol phosphates and diacylglycerol. Incorporation of radioactivity into phosphatidylinositol was linear during 2 h incubations; 10(-7) M (100 nM)-oxytocin caused a 2.8-fold increase in the rate of incorporation. In the presence of Li+, addition of 10(-7) M-oxytocin to slices in which phosphatidylinositol was pre-labelled caused mean increase of 40-fold in the incorporation of radioactivity into inositol mono-, bis- and tris-phosphates. Inositol 1,3,4-trisphosphate was quantitatively the major trisphosphate formed. The action of oxytocin on phosphoinositide hydrolysis was dose- and time-dependent, occurring at concentrations within the range observed in plasma during episodes of secretion in vivo, and with a time course comparable with that of the action of oxytocin on uterine prostaglandin production. The effect of oxytocin on incorporation of radioactivity into inositol phosphates was not affected by inhibitors of prostaglandin synthesis. Diacylglycerol 1- and 2-lipases in caruncular endometrium converted up to 72% of added 2-[3H]arachidonyldiacylglycerol into [3H]arachidonic acid during 30 min incubations at pH 7.0. Caruncular endometrium contained 1.49 mumol of phosphatidylinositol/g, representing approx. 0.2 mumol/g of phosphatidylinositol arachidonic acid. It is proposed that the stimulation of endometrial prostaglandin synthesis by oxytocin is accounted for by increased hydrolysis of phosphoinositides to diacylglycerol and inositol phosphates with subsequent release of arachidonic acid from diacylglycerol.

Details

ISSN :
14708728 and 02646021
Volume :
237
Database :
OpenAIRE
Journal :
Biochemical Journal
Accession number :
edsair.doi.dedup.....6bf8e1c3aa239bb2055b906efa59265b