Back to Search
Start Over
Relationship between frequency spectrum of heart rate variability and autonomic nervous activities during sleep in newborns
- Source :
- Brain and Development. 40:165-171
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Introduction We analyzed the frequency spectrum of two neonatal sleep stages, namely active sleep and quiet sleep, and the relationship between these sleep stages and autonomic nervous activity in 74 newborns and 16 adults as a comparison. Method Active and quiet sleep were differentiated by electroencephalogram (EEG) patterns, eye movements, and respiratory wave patterns; autonomic activity was analyzed using the RR interval of simultaneously recorded electrocardiogram (ECG) signals. Power values (LFa, absolute low frequency; HFa, absolute high frequency), LFa/HFa ratio, and the values of LFn (normalized low frequency) and HFn (normalized high frequency) were obtained. Synchronicity between the power value of HFa and the LFa/HFa ratio during active and quiet sleep was also examined by a new method of chronological demonstration of the power values of HFa and LFa/HFa. Results We found that LFa, HFa and the LFa/HFa ratio during active sleep were significantly higher than those during quiet sleep in newborns; in adults, on the other hand, the LFa/HFa ratio during rapid eye movement (REM) sleep, considered as active sleep, was significantly higher than that during non-REM sleep, considered as quiet sleep, and HFa values during REM sleep were significantly lower than those during non-REM sleep. LFn during quiet sleep in newborns was significantly lower than that during active sleep. Conversely, HFn during quiet sleep was significantly higher than that during active sleep. Analysis of the four classes of gestational age groups at birth indicated that autonomic nervous activity in a few preterm newborns did not reach the level seen in full-term newborns. Furthermore, the power value of HFa and the LFa/HFa ratio exhibited reverse synchronicity. Conclusion These results indicate that the autonomic patterns in active and quiet sleep of newborns are different from those in REM and non-REM sleep of adults and may be develop to the autonomic patterns in adults, and that parasympathetic activity is dominant during quiet sleep as compared to active sleep from the results of LFn and HFn in newborns. In addition, in some preterm infants, delayed development of the autonomic nervous system can be determined by classifying the autonomic nervous activity pattern of sleep stages.
- Subjects :
- Male
medicine.medical_specialty
Critical Care
Eye Movements
genetic structures
Polysomnography
Gestational Age
Audiology
Electroencephalography
Autonomic Nervous System
Electrocardiography
03 medical and health sciences
0302 clinical medicine
Developmental Neuroscience
Heart Rate
mental disorders
medicine
Humans
Heart rate variability
Retrospective Studies
Sleep Stages
medicine.diagnostic_test
musculoskeletal, neural, and ocular physiology
Age Factors
Infant, Newborn
Infant
Eye movement
Gestational age
030229 sport sciences
General Medicine
Middle Aged
Brain Waves
Sleep in non-human animals
Frequency spectrum
Autonomic nervous system
Anesthesia
Pediatrics, Perinatology and Child Health
Female
Neurology (clinical)
Sleep
Psychology
psychological phenomena and processes
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 03877604
- Volume :
- 40
- Database :
- OpenAIRE
- Journal :
- Brain and Development
- Accession number :
- edsair.doi.dedup.....6bf26b8936082b46ff98d20524affcff
- Full Text :
- https://doi.org/10.1016/j.braindev.2017.09.003