Back to Search Start Over

Prediction of addiction to drugs and alcohol using machine learning: A case study on Bangladeshi population

Authors :
Saiful Islam Sany
Md. Tarek Habib
Md. Sadekur Rahman
Md. Ariful Islam Arif
Farah Sharmin
Source :
International Journal of Electrical and Computer Engineering (IJECE). 11:4471
Publication Year :
2021
Publisher :
Institute of Advanced Engineering and Science, 2021.

Abstract

Nowadays addiction to drugs and alcohol has become a significant threat to the youth of the society as Bangladesh’s population. So, being a conscientious member of society, we must go ahead to prevent these young minds from life-threatening addiction. In this paper, we approach a machinelearning-based way to forecast the risk of becoming addicted to drugs using machine-learning algorithms. First, we find some significant factors for addiction by talking to doctors, drug-addicted people, and read relevant articles and write-ups. Then we collect data from both addicted and nonaddicted people. After preprocessing the data set, we apply nine conspicuous machine learning algorithms, namely k-nearest neighbors, logistic regression, SVM, naïve bayes, classification, and regression trees, random forest, multilayer perception, adaptive boosting, and gradient boosting machine on our processed data set and measure the performances of each of these classifiers in terms of some prominent performance metrics. Logistic regression is found outperforming all other classifiers in terms of all metrics used by attaining an accuracy approaching 97.91%. On the contrary, CART shows poor results of an accuracy approaching 59.37% after applying principal component analysis.

Details

ISSN :
27222578 and 20888708
Volume :
11
Database :
OpenAIRE
Journal :
International Journal of Electrical and Computer Engineering (IJECE)
Accession number :
edsair.doi.dedup.....6beeb67388f4a557802f4ca661642e35
Full Text :
https://doi.org/10.11591/ijece.v11i5.pp4471-4480