Back to Search
Start Over
Probabilistic Power Flow Calculation using Non-intrusive Low-rank Approximation Method
- Publication Year :
- 2019
- Publisher :
- arXiv, 2019.
-
Abstract
- In this paper, a novel non-intrusive probabilistic power flow (PPF) analysis method based on the low-rank approximation (LRA) is proposed, which can accurately and efficiently estimate the probabilistic characteristics (e.g., mean, variance, probability density function) of the PPF solutions. This method aims at building up a statistically-equivalent surrogate for the PPF solutions through a small number of power flow evaluations. By exploiting the retained tensor-product form of the univariate polynomial basis, a sequential correction-updating scheme is applied, making the total number of unknowns to be linear rather than exponential to the number of random inputs. Consequently, the LRA method is particularly promising for dealing with high-dimensional problems with a large number of random inputs. Numerical studies on the IEEE 39-bus, 118-bus, and 1354-bus systems show that the proposed method can achieve accurate probabilistic characteristics of the PPF solutions with much less computational effort compared to the Monte Carlo simulations. Even compared to the polynomial chaos expansion method, the LRA method can achieve comparable accuracy, while the LRA method is more capable of handling higher-dimensional problems. Moreover, numerical results reveal that the randomness brought about by the renewable energy resources and loads may inevitably affect the feasibility of dispatch/planning schemes.<br />Comment: 12 pages, 5 figures, Accepted by IEEE Transactions on Power Systems on January 27, 2019. arXiv admin note: text overlap with arXiv:1810.08156
- Subjects :
- Signal Processing (eess.SP)
Mathematical optimization
Polynomial chaos
Computer science
020209 energy
Monte Carlo method
Probabilistic logic
Energy Engineering and Power Technology
Low-rank approximation
Probability density function
02 engineering and technology
AC power
Polynomial basis
0202 electrical engineering, electronic engineering, information engineering
FOS: Electrical engineering, electronic engineering, information engineering
Electrical and Electronic Engineering
Electrical Engineering and Systems Science - Signal Processing
Randomness
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....6be9cc4196689243c891ce6ec84dc4ca
- Full Text :
- https://doi.org/10.48550/arxiv.1902.01202