Back to Search Start Over

Hierarchical Ring Network design

Authors :
Jean-Claude Bermond
Sébastien Choplin
Stéphane Pérennes
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Source :
Theory of Computing Systems, Theory of Computing Systems, 2003, 36 (6), pp.663-682. ⟨10.1007/s00224-003-1127-1⟩
Publication Year :
2003
Publisher :
Springer Science and Business Media LLC, 2003.

Abstract

A Hierarchical Ring Network is obtained from a ring network by appending at most one subsidiary ring to each node of the ring and, recursively, to each node of each subsidiary ring. The depth d is the number of levels of the recursive appending of subsidiary rings. There are different definitions according to which rings are appended to nodes created at the preceding level (called an HRN) or to any node (called here an HBN for Hierarchical Bubble Network). The case of an HRN was considered by Aiello et al. who give bounds (not tight) on the diameter of such an HRN as a function of the depth and the number of nodes. Here we determine the exact order of the diameter both for an HRN and an HBN. In fact we consider the optimization problem of maximizing the number of nodes of an HBN (or an HRN) of given depth d and diameter D. We reduce the problem to a system of equations with a complex objective function. Solving this system enables us to determine precisely the structure of an optimal HBN and to show that the maximum number of nodes is of order D d /d!.

Details

ISSN :
14330490 and 14324350
Volume :
36
Database :
OpenAIRE
Journal :
Theory of Computing Systems
Accession number :
edsair.doi.dedup.....6bd0aa84bbf178467b44ac9c4bc27bcf
Full Text :
https://doi.org/10.1007/s00224-003-1127-1