Back to Search Start Over

Learning Deformable Object Manipulation from Expert Demonstrations

Authors :
Gautam Salhotra
I-Chun Arthur Liu
Marcus Dominguez-Kuhne
Gaurav S. Sukhatme
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

We present a novel Learning from Demonstration (LfD) method, Deformable Manipulation from Demonstrations (DMfD), to solve deformable manipulation tasks using states or images as inputs, given expert demonstrations. Our method uses demonstrations in three different ways, and balances the trade-off between exploring the environment online and using guidance from experts to explore high dimensional spaces effectively. We test DMfD on a set of representative manipulation tasks for a 1-dimensional rope and a 2-dimensional cloth from the SoftGym suite of tasks, each with state and image observations. Our method exceeds baseline performance by up to 12.9% for state-based tasks and up to 33.44% on image-based tasks, with comparable or better robustness to randomness. Additionally, we create two challenging environments for folding a 2D cloth using image-based observations, and set a performance benchmark for them. We deploy DMfD on a real robot with a minimal loss in normalized performance during real-world execution compared to simulation (~6%). Source code is on github.com/uscresl/dmfd<br />Comment: Accepted to IEEE Robotics & Automation Letters (RA-L) and IEEE IROS 2022. Project website: https://uscresl.github.io/dmfd

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....6bc0578d58d149800efe1e9b19373c43
Full Text :
https://doi.org/10.48550/arxiv.2207.10148