Back to Search Start Over

Genome-Wide Identification of Dickeya solani Transcriptional Units Up-Regulated in Response to Plant Tissues From a Crop-Host Solanum tuberosum and a Weed-Host Solanum dulcamara

Authors :
Tomasz Maciag
Lukasz Rabalski
Robert Czajkowski
Nicole Hugouvieux-Cotte-Pattat
Marta Krychowiak-Maśnicka
Sylwia Jafra
Malwina Richert
Paulina Czaplewska
Jakub Fikowicz-Krosko
Source :
Frontiers in Plant Science, Frontiers in Plant Science, Vol 11 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

Dickeya solani is a Gram-negative bacterium able to cause disease symptoms on a variety of crop and ornamental plants worldwide. Weeds including Solanum dulcamara (bittersweet nightshade) growing near agricultural fields have been reported to support populations of soft rot bacteria in natural settings. However, little is known about the specific interaction of D. solani with such weed plants that may contribute to its success as an agricultural pathogen. The aim of this work was to assess the interaction of D. solani with its crop plant (Solanum tuberosum) and an alternative (S. dulcamara) host plant. From a collection of 10,000 Tn5 transposon mutants of D. solani IPO2222 carrying an inducible, promotorless gusA reporter gene, 210 were identified that exhibited plant tissue-dependent expression of the gene/operon into which the Tn5 insertion had occurred. Thirteen Tn5 mutants exhibiting the greatest plant tissue induction of such transcriptional units in S. tuberosum or S. dulcamara as measured by qRT-PCR were assessed for plant host colonization, virulence, and ability to macerate plant tissue, as well as phenotypes likely to contribute to the ecological fitness of D. solani, including growth rate, carbon and nitrogen source utilization, motility, chemotaxis toward plant extracts, biofilm formation, growth under anaerobic conditions and quorum sensing. These 13 transcriptional units encode proteins involved in bacterial interactions with plants, with functions linked to cell envelope structure, chemotaxis and carbon metabolism. The selected 13 genes/operons were differentially expressed in, and thus contributed preferentially to D. solani fitness in potato and/or S. dulcamara stem, leaf, and root tissues.

Details

Language :
English
ISSN :
1664462X
Volume :
11
Database :
OpenAIRE
Journal :
Frontiers in Plant Science
Accession number :
edsair.doi.dedup.....6ba90a05f40e19c2a55e6d9404e0a3dd