Back to Search
Start Over
Thermal behavior of graphene oxide and its stabilization effects on transition metal complexes of triaminoguanidine
- Source :
- Journal of Hazardous Materials. 368:404-411
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- The graphene oxide (GO) was found to be able to stabilize organic molecules including energetic compounds. However, the inherent mechanisms of such stabilization effects are still not well-known. Herein, various transition metal complexes of triaminoguanidine nitrate (TAGN) using GO as a dopant have been prepared and evaluated. It has been shown that the presence of GO could great improve the thermal stability of the resulted TAG-based complexes. The physical models governing their thermolysis for their initial rate-limiting decomposition steps are obtained using the state-of-the-art evaluation methods. These physical models are further supported by analyses of the overall gaseous products. In addition, the reaction pathways are proposed to explain the stabilization mechanisms of GO. For instance, by interaction of GO, the release of N2 from TAG-Ni was greatly postponed. There is a broad secondary peak at temperature of 378 °C due to decomposition of the nickel nitrides, as the primary thermolysis intermediates of TAG-Ni. The formation of cobalt nitrides plays a significant role on decomposition of TAG-Co and G-T-Co, which results in much less heat release and mass loss in comparison to TAG-Ni.
- Subjects :
- Environmental Engineering
Materials science
Health, Toxicology and Mutagenesis
0211 other engineering and technologies
Oxide
chemistry.chemical_element
02 engineering and technology
010501 environmental sciences
01 natural sciences
law.invention
chemistry.chemical_compound
Transition metal
law
Environmental Chemistry
Thermal stability
Waste Management and Disposal
0105 earth and related environmental sciences
021110 strategic, defence & security studies
Dopant
Graphene
Thermal decomposition
Pollution
Decomposition
chemistry
Chemical engineering
Cobalt
Subjects
Details
- ISSN :
- 03043894
- Volume :
- 368
- Database :
- OpenAIRE
- Journal :
- Journal of Hazardous Materials
- Accession number :
- edsair.doi.dedup.....6b8989b062f588ad4aecf7b325d57c51
- Full Text :
- https://doi.org/10.1016/j.jhazmat.2019.01.073