Back to Search
Start Over
Resistance Training Improves Beta Cell Glucose Sensing and Survival in Diabetic Models
- Source :
- International Journal of Molecular Sciences; Volume 23; Issue 16; Pages: 9427
- Publication Year :
- 2022
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2022.
-
Abstract
- Resistance training increases insulin secretion and beta cell function in healthy mice. Here, we explored the effects of resistance training on beta cell glucose sensing and survival by using in vitro and in vivo diabetic models. A pancreatic beta cell line (INS-1E), incubated with serum from trained mice, displayed increased insulin secretion, which could be linked with increased expression of glucose transporter 2 (GLUT2) and glucokinase (GCK). When cells were exposed to pro-inflammatory cytokines (in vitro type 1 diabetes), trained serum preserved both insulin secretion and GCK expression, reduced expression of proteins related to apoptotic pathways, and also protected cells from cytokine-induced apoptosis. Using 8-week-old C57BL/6 mice, turned diabetic by multiple low doses of streptozotocin, we observed that resistance training increased muscle mass and fat deposition, reduced fasting and fed glycemia, and improved glucose tolerance. These findings may be explained by the increased fasting and fed insulinemia, along with increased beta cell mass and beta cell number per islet, observed in diabetic-trained mice compared to diabetic sedentary mice. In conclusion, we believe that resistance training stimulates the release of humoral factors which can turn beta cells more resistant to harmful conditions and improve their response to a glucose stimulus.
- Subjects :
- Blood Glucose
Organic Chemistry
Resistance Training
General Medicine
Catalysis
Computer Science Applications
Mice, Inbred C57BL
Inorganic Chemistry
Mice
Glucose
Insulin-Secreting Cells
Physical Conditioning, Animal
Glucokinase
Diabetes Mellitus
diabetes
inflammation
glycemia
insulin
metabolism
health
exercise
streptozotocin
Animals
Insulin
Physical and Theoretical Chemistry
Molecular Biology
Spectroscopy
Subjects
Details
- Language :
- English
- ISSN :
- 14220067
- Database :
- OpenAIRE
- Journal :
- International Journal of Molecular Sciences; Volume 23; Issue 16; Pages: 9427
- Accession number :
- edsair.doi.dedup.....6b8664584c97d5935d4d6eb8d9b5f7cf
- Full Text :
- https://doi.org/10.3390/ijms23169427