Back to Search Start Over

A composite graft material containing bone particles and collagen in osteoinduction in mouse

Authors :
Emily Y. Chi
Chung Hung Tsai
Ming Yung Chou
Yung Tico Tien
Mecrehild Jonas
Source :
Journal of Biomedical Materials Research. 63:65-70
Publication Year :
2002
Publisher :
Wiley, 2002.

Abstract

Demineralized allogenic bone matrices (DABM) and demineralized freeze-dried bone allograft (DFDBA) have been successfully used as bone-graft materials in the treatment of acquired and congenital cranio-maxillofacial defects and in some orthopedic surgery. However, these bone-graft "powders" have many shortcomings. For example, placement of particulate graft material in a hemorrhaging site can result in inadequacies or inaccurate attachment as well as loss of the graft materials. To minimize the inadequacies of powderlike graft materials, xenogenic collagen isolated from human tendon, skin, or bone was added to the bone-graft particles to form a composite spongelike implant. This material is commercially available and consists of 60% collagen and 40% DFDBA (DynaGraft, GenSci Co., Irvine, CA). The goal of this study was to evaluate the characteristics of composite graft implants in the mineralization process in an animal model in comparison with DFDBA powder and pure collagen. Seventy-two Swiss Webster mice were divided into three groups: an experimental group implanted with DynaGraft, two comparison groups implanted with either DFDBA or collagen only. All the graft materials were surgically implanted and inserted into the left thigh muscle. Mice were humanely killed at 1, 2, 3, 4, 6, 8, and 12 weeks. Then the muscle tissues in the vicinity of the implants were excised and processed for histology. Paraffin sections were stained with hematoxylin and eosin (H&E), the Von Kossa method, and Masson's trichrome. Some selected specimens were processed for transmission electron microscopic observation. After 1 week of implantation, the DynaGraft group showed calcium deposition on the collagen material and on the periphery of the DFDBA particles. Increased calcification and bone-forming cells were observed at 4-6 weeks. After 8 weeks, the implant formed a calcified nodule and only heavily mineralized connective tissue was observed at the implanted site. The group implanted with DFDBA powder showed calcification around the particulates. The collagen-sponge control group revealed no calcification or bone formation during the period of implantation. The light microscopic findings were confirmed by electron microscopy. Quantitative radiographic density DynaGraft and DFDBA graft followed sequentially over a period 120 days. It was concluded that a higher rate of calcification and bone formation was produced in the composite graft implant compared to the DFDBA implant. The composite graft material (DynaGraft), which contains both collagen and DFDBA, proved to be more effective for bone formation than particle components alone.

Details

ISSN :
10974636 and 00219304
Volume :
63
Database :
OpenAIRE
Journal :
Journal of Biomedical Materials Research
Accession number :
edsair.doi.dedup.....6b6ecac561a5f7ee49fa922a63301541
Full Text :
https://doi.org/10.1002/jbm.10089