Back to Search Start Over

Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach

Authors :
Maite G. Fernandez-Barrena
Daniel Oyón
Maria U. Latasa
Marta R. Romero
Isabel Gil
Maria J. Monte
Jose M Herranz
Gloria Alvarez-Sola
Leticia Colyn
María Rullán
Iker Uriarte
Bruno Sangro
Jose J.G. Marin
Matías A. Avila
Lucía Zabalza
F. Bolado
Belén González
Marta Iruarrizaga-Lejarreta
Jesús Urman
María J. Iraburu
María L. Martínez-Chantar
María Arechederra
Francisco Javier Cubero
Ignacio Fernandez-Urien
Jesus M. Banales
Juan Carrascosa
Fernando J. Corrales
Rocio I.R. Macias
Ana Purroy
Cristina Alonso
Carmen Berasain
Leonor Puchades-Carrasco
Juan J. Vila
Lorena Carmona
Antonio Pineda-Lucena
Instituto de Salud Carlos III
European Commission
Fundación Científica Asociación Española Contra el Cáncer
Diputación Foral de Navarra
Fundación 'la Caixa'
AMMF - The Cholangiocarcinoma Charity
Fundación Vasca de Innovación e Investigación Sanitarias
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
Fundación BBVA
Ministerio de Economía y Competitividad (España)
Generalitat Valenciana
Fundación Eugenio Rodríguez Pascual
Fundación Echébano
Fundación Mario Losantos del Campo
Fundación MTorres
Comunidad de Madrid
Source :
E-Prints Complutense. Archivo Institucional de la UCM, instname, Cancers, Volume 12, Issue 6, r-IIS La Fe. Repositorio Institucional de Producción Científica del Instituto de Investigación Sanitaria La Fe, Cancers, Vol 12, Iss 1644, p 1644 (2020), Digital.CSIC. Repositorio Institucional del CSIC
Publication Year :
2020
Publisher :
MDPI, 2020.

Abstract

Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.<br />This research was funded by: Instituto de Salud Carlos III (ISCIII) co-financed by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa, grant numbers: PI16/01126 (M.A.A.), PI19/00819 (M.J.M. and J.J.G.M.), PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129 (J.M.B.); Fundación Científica de la Asociación Española Contra el Cáncer (AECC Scientific Foundation), grant name: Rare Cancers 2017 (J.M.U., M.L.M., J.M.B., M.J.M., R.I.R.M., M.G.F.-B., C.B., M.A.A.); Gobierno de Navarra Salud, grant number 58/17 (J.M.U., M.A.A.); La Caixa Foundation, grant name: HEPACARE (C.B., M.A.A.); AMMF The Cholangiocarcinoma Charity, UK, grant number: 2018/117 (F.J.C. and M.A.A.); PSC Partners US, PSC Supports UK, grant number 06119JB (J.M.B.); Horizon 2020 (H2020) ESCALON project, grant number H2020-SC1-BHC-2018–2020 (J.M.B.); BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia, grant numbers BIO15/CA/016/BD (J.M.B.) and BIO15/CA/011 (M.A.A.). Department of Health of the Basque Country, grant number 2017111010 (J.M.B.). La Caixa Foundation, grant number: LCF/PR/HP17/52190004 (M.L.M.), Mineco-Feder, grant number SAF2017-87301-R (M.L.M.), Fundación BBVA grant name: Ayudas a Equipos de Investigación Científica Umbrella 2018 (M.L.M.). MCIU, grant number: Severo Ochoa Excellence Accreditation SEV-2016-0644 (M.L.M.). Part of the equipment used in this work was co-funded by the Generalitat Valenciana and European Regional Development Fund (FEDER) funds (PO FEDER of Comunitat Valenciana 2014–2020). Gobierno de Navarra fellowship to L.C. (Leticia Colyn); AECC post-doctoral fellowship to M.A.; Ramón y Cajal Program contracts RYC-2014-15242 and RYC2018-024475-1 to F.J.C. and M.G.F.-B., respectively. The generous support from: Fundación Eugenio Rodríguez Pascual, Fundación Echébano, Fundación Mario Losantos, Fundación M Torres and Mr. Eduardo Avila are acknowledged. The CNB-CSIC Proteomics Unit belongs to ProteoRed, PRB3-ISCIII, supported by grant PT17/0019/0001 (F.J.C.). Comunidad de Madrid Grant B2017/BMD-3817 (F.J.C.).

Details

ISSN :
20171110 and 20726694
Database :
OpenAIRE
Journal :
E-Prints Complutense. Archivo Institucional de la UCM, instname, Cancers, Volume 12, Issue 6, r-IIS La Fe. Repositorio Institucional de Producción Científica del Instituto de Investigación Sanitaria La Fe, Cancers, Vol 12, Iss 1644, p 1644 (2020), Digital.CSIC. Repositorio Institucional del CSIC
Accession number :
edsair.doi.dedup.....6b1e9f85d1b08f3ebb21b6565a8accf8