Back to Search Start Over

Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials

Authors :
Pablo Álvarez-Caudevilla
Matthieu Bonnivard
Antoine Lemenant
Université Carlos III de Madrid
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Lemenant, Antoine
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Source :
BASE-Bielefeld Academic Search Engine, ESAIM: Control, Optimisation and Calculus of Variations, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020, 26, pp.50. ⟨10.1051/cocv/2019023⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

In this paper, we observe how the heat equation in a noncylindrical domain can arise as the asymptotic limit of a parabolic problem in a cylindrical domain, by adding a potential that vanishes outside the limit domain. This can be seen as a parabolic version of a previous work by the first and last authors, concerning the stationary case [Alvarez-Caudevilla and Lemenant, Adv. Differ. Equ. 15 (2010) 649-688]. We provide a strong convergence result for the solution by use of energetic methods and Γ-convergence technics. Then, we establish an exponential decay estimate coming from an adaptation of an argument due to B. Simon.

Details

Language :
English
ISSN :
12928119 and 12623377
Database :
OpenAIRE
Journal :
BASE-Bielefeld Academic Search Engine, ESAIM: Control, Optimisation and Calculus of Variations, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020, 26, pp.50. ⟨10.1051/cocv/2019023⟩
Accession number :
edsair.doi.dedup.....6b151d271da52386e9cd2c86a8b2cfb5
Full Text :
https://doi.org/10.1051/cocv/2019023⟩