Back to Search Start Over

Mass transfer properties of chlorinated aromatic polyamide reverse osmosis membranes

Authors :
Emmanuelle Gaudichet-Maurin
Pierre Aimar
Axel Ettori
Christel Causserand
Veolia Environnement (FRANCE)
Laboratoire de génie chimique [ancien site de Basso-Cambo] (LGC)
Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratoire de Génie Chimique - LGC (Toulouse, France)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Source :
Separation and Purification Technology, Separation and Purification Technology, Elsevier, 2012, vol. 101, pp. 60-67. ⟨10.1016/j.seppur.2012.09.008⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; Water (A) and solute (B) permeability of aromatic polyamide (PA) reverse osmosis membranes (RO) were monitored under varying applied pressure, solute nature and concentration to assess their evolution after exposure of the membrane to free chlorine. Above a threshold value of 400 ppm h HOCl water permeability was influenced by permeation conditions during both filtration of ultrapure water (UP water) and reverse osmosis of salts performed sequentially. Water permeability decreased during the filtration of UP water performed at a constant applied pressure of 60 bar. During the reverse osmosis of an electrolyte solution, performed at a constant permeation flux of 31 L h¯¹ m¯², A was observed to increase continuously with time, e.g. up to a factor of 3 after exposure to 3120 ppm h HOCl, most severe dose used. Differences in the charge density of mono- and divalent cations did not influence the rate of increase of A with time, which was however shown to depend on salt flux and ascribed to a diffusion limited relaxation process presumed to occur within the dense hydrated PA network. The relative and opposite impact of applied pressure and of salt permeation highlighted the importance in distinguishing conditions under which the water permeability (A) of a chlorinated membrane is measured, whether during the filtration of UP water or of a salt.

Details

Language :
English
ISSN :
13835866
Database :
OpenAIRE
Journal :
Separation and Purification Technology, Separation and Purification Technology, Elsevier, 2012, vol. 101, pp. 60-67. ⟨10.1016/j.seppur.2012.09.008⟩
Accession number :
edsair.doi.dedup.....6ad71c2ce5e061800f47d759e9a2a6db
Full Text :
https://doi.org/10.1016/j.seppur.2012.09.008⟩