Back to Search
Start Over
Carbon flux and fatty acid synthesis in plants
- Source :
- Progress in lipid research. 41(2)
- Publication Year :
- 2002
-
Abstract
- The de novo synthesis of fatty acids in plants occurs in the plastids through the activity of fatty acid synthetase. The synthesis of the malonyl-coenzyme A that is required for acyl-chain elongation requires the import of metabolites from the cytosol and their subsequent metabolism. Early studies had implicated acetate as the carbon source for plastidial fatty acid synthesis but more recent experiments have provided data that argue against this. A range of cytosolic metabolites including glucose 6-phosphate, malate, phosphoenolpyruvate and pyruvate support high rates of fatty acid synthesis by isolated plastids, the relative utilisation of which depends upon the plant species and the organ from which the plastids are isolated. The import of these metabolites occurs via specific transporters on the plastid envelope and recent advances in the understanding of the role of these transporters are discussed. Chloroplasts are able to generate the reducing power and ATP required for fatty acid synthesis by capture of light energy in the reactions of photosynthetic electron transport. Regulation of chloroplast fatty acid synthesis is mediated by the response of acetyl-CoA carboxylase to the redox state of the plastid, which ensures that the carbon metabolism is linked to the energy status. The regulation of fatty acid synthesis in plastids of heterotrophic cells is much less well understood and is of particular interest in the tissues that accumulate large amounts of the storage oil, triacylglycerol. In these heterotrophic cells the plastids import ATP and oxidise imported carbon sources to produce the required reducing power. The sequencing of the genome of Arabidopsis thaliana has now enabled a number of aspects of plant fatty acid synthesis to be re-addressed, particularly those areas in which in vitro biochemical analysis had provided equivocal answers. Examples of such aspects and future opportunities for our understanding of plant fatty acid synthesis are presented and discussed.
- Subjects :
- chemistry.chemical_classification
biology
fungi
Fatty Acids
food and beverages
Fatty acid
Cell Biology
Plants
Biochemistry
Carbon
Pyruvate carboxylase
Chloroplast
chemistry.chemical_compound
Adenosine Triphosphate
chemistry
Acetyl Coenzyme A
biology.protein
Beta-ketoacyl-ACP synthase
Plastids
Plastid
Plastid envelope
Beta oxidation
Fatty acid synthesis
Subjects
Details
- ISSN :
- 01637827
- Volume :
- 41
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Progress in lipid research
- Accession number :
- edsair.doi.dedup.....6abc9664a4c0696d9568f89b682940f5