Back to Search Start Over

Analysis of recombinant and native CD4 by one- and two-dimensional gel electrophoresis

Authors :
Mark Dearden
Ian Humphery-Smith
Andrew J. Sloane
Anthony L. Cunningham
Garry W. Lynch
Source :
Electrophoresis. 17:227-234
Publication Year :
1996
Publisher :
Wiley, 1996.

Abstract

Knowledge of CD4 conformation within the membranes of human lymphoid and monocytoid cells is essential for a clear understanding of its function as a ligand for major histocompatibility complex II (MHC) molecules in T cell activation and for gp120 in human immunodeficiency virus (HIV) infection. The charge and structure of native (nCD4) and soluble recombinant CD4 (rCD4) were examined by one- and two-dimensional (2-DE) electrophoresis antigen mapping and silver staining. Recombinant CD4 was partitioned by nonequilibrium pH gradient electrophoresis (NEPHGE) and revealed a number of differentially charged 44 kDa species (pI > 9.5). Biotinylation (4 h, room temperature) of rCD4 yielded a single labelled species on sodium dodedyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with an increased apparent molecular mass to 50 kDa, consistent with a maximal incorporation of approximately 18 molecules of biotin per rCD4 molecule. The milder biotinylation (15 min, 4 degrees C) of cell-(CEM-T4, THP-1) expressed CD4 was not accompanied by any apparent alteration in molecular weight, nor abrogation of CD4 antigenicity. This was determined by isolation of nCD4 by immunoprecipitation and SDS-PAGE immunoblotting, using anti-CD4 mAbs (leu3a, OKT4A, Q4120, T4, OKT4, Q425) and by flow cytometry (leu4a, T4). The immunoprecipitation of full-length native CD4 from lymphoid MT2 and CEM-T4 cell extracts, however, revealed both monomeric and higher-order CD4 antigen complexes by immunoblotting. These studies describe the biotinylation, 1-DE and 2-DE of CD4 preparations, and indicate the capacity of CD4 of lymphocytes to form complexes which may influence CD4 conformation and epitope availability.

Details

ISSN :
15222683 and 01730835
Volume :
17
Database :
OpenAIRE
Journal :
Electrophoresis
Accession number :
edsair.doi.dedup.....6ab45b4e5bbc702284875b85ffdfb052
Full Text :
https://doi.org/10.1002/elps.1150170139