Back to Search Start Over

Optimisation of HPLC gradient separations using artificial neural networks (ANNs): application to benzodiazepines in post-mortem samples

Authors :
Michael Dawson
Philip Doble
Rebecca Webb
Source :
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 877(7)
Publication Year :
2008

Abstract

Artificial neural networks (ANNs) were used in conjunction with an experimental design to optimise a gradient HPLC separation of nine benzodiazepines. Using the best performing ANN, the optimum conditions predicted were 25 mM formate buffer (pH 2.8), 10% MeOH, acetonitrile (ACN) gradient 0-15 min, 6.5-48.5%. The error associated with the prediction of retention times and peak widths under these conditions was less than 5% for six of the nine analytes. The optimised method, with limits of detection (LODs) in the range of 0.0057-0.023 μg/mL and recoveries between 58% and 92%, was successfully applied to authentic post-mortem samples. This method represents a more flexible and convenient means for optimising gradient elution separations using ANNs than has been previously reported. © 2009 Elsevier B.V. All rights reserved.

Details

ISSN :
1873376X
Volume :
877
Issue :
7
Database :
OpenAIRE
Journal :
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
Accession number :
edsair.doi.dedup.....6a8128b756409b55736d164c8eff538c