Back to Search
Start Over
The Northern Cross Fast Radio Burst project -- III. The FRB-magnetar connection in a sample of nearby galaxies
- Publication Year :
- 2023
- Publisher :
- arXiv, 2023.
-
Abstract
- Fast radio bursts (FRBs) are millisecond radio transients observed at cosmological distances. The nature of their progenitors is still a matter of debate, although magnetars are invoked by most models. The proposed FRB-magnetar connection was strengthened by the discovery of an FRB-like event from the Galactic magnetar SGR J1935+2154. In this work, we aim to investigate how prevalent magnetars such as SGR J1935+2154 are within FRB progenitors. We carried out an FRB search in a sample of seven nearby (< 12 Mpc) galaxies with the Northern Cross radio telescope for a total of 692 h. We detected one 1.8 ms burst in the direction of M101 with a fluence of $58 \pm 5$ Jy ms. Its dispersion measure of 303 pc cm$^{-3}$ places it most-likely beyond M101. Considering that no significant detection comes indisputably from the selected galaxies, we place a 38 yr$^{-1}$ upper limit on the total burst rate (i.e. including the whole sample) at the 95\% confidence level. This upper limit constrains the event rate per magnetar $λ_{\rm mag} < 0.42$ magnetar$^{-1}$ yr$^{-1}$ or, if combined with literature observations of a similar sample of nearby galaxies, it yields a joint constraint of $λ_{\rm mag} < 0.25$ magnetar$^{-1}$ yr$^{-1}$. We also provide the first constraints on the expected rate of FRBs hypothetically originating from ultraluminous X-ray (ULX) sources, since some of the galaxies observed during our observational campaign host confirmed ULXs. We obtain $< 13$ yr$^{-1}$ per ULX for the total sample of galaxies observed. Our results indicate that bursts with energies $E>10^{34}$ erg from magnetars like SGR J1935+2154 appear more rarely compared to previous observations and further disfavour them as unique progenitors for the cosmological FRB population, leaving more space open to the contribution from a population of more exotic magnetars, not born via core-collapsed supernovae.<br />9 pages, 4 figures, published in A&A
- Subjects :
- High Energy Astrophysical Phenomena (astro-ph.HE)
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Astrophysics of Galaxies
Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....6a6da78be34816c4aef28e1b26596d63
- Full Text :
- https://doi.org/10.48550/arxiv.2304.11179