Back to Search Start Over

Muscle architecture and shape changes in the gastrocnemii of active younger and older adults

Authors :
Nicole Y. Kelp
François Hug
Kylie Tucker
Anna Gore
Taylor J. M. Dick
Christofer J. Clemente
Source :
Journal of biomechanics. 129
Publication Year :
2021

Abstract

When muscles contract and change length, they also bulge in thickness and/or width. These shape changes extend the functional range of skeletal muscle by allowing individual muscle fibres to shorten at different velocities than the whole muscle. Age-related differences in muscle architecture and tissue properties influence how older muscles change shape and architecture during contractions, yet this remains unexplored in active older adults. The aim of this study was to quantify and compare in vivo muscle architecture and shape changes in the medial (MG) and lateral (LG) gastrocnemii of active younger and older adults during isometric plantarflexion contractions. Fifteen younger (21 ± 2y) and 15 older (70 ± 3y) participants performed contractions at 20%, 40%, 60%, 80%, and 100% of maximum voluntary contraction (MVC). B-mode ultrasound was used to measure fascicle length, pennation angle and muscle thickness in MG and LG. We found no influence of age on changes in normalized fascicle length and thickness, or absolute change in pennation angle during contractions. With increasing contraction level, MG and LG fascicle shortening (P 0.001) and rotation (P 0.001) increased. However, the change in muscle thickness increased at higher contraction levels in LG, and not MG. Similarly, increased changes in pennation angle were associated with increased muscle thickness in LG, but not MG at 80% and 100% MVC. These results suggest that (1) gastrocnemii shape changes are similar in active older and younger adults at matched levels of effort, and (2) the relationship between pennation angle and muscle thickness can differ between synergistics (LG and MG) and across contraction levels.

Details

ISSN :
18732380
Volume :
129
Database :
OpenAIRE
Journal :
Journal of biomechanics
Accession number :
edsair.doi.dedup.....6a664f07d169467156868276ae87160a