Back to Search Start Over

Linear-scaling source-sink algorithm for simulating time-resolved quantum transport and superconductivity

Authors :
Joseph Weston
Xavier Waintal
Service de Physique Statistique, Magnétisme et Supraconductivité (SPSMS - UMR 9001)
Institut Nanosciences et Cryogénie (INAC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Laboratory of Quantum Theory (GT)
PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS)
Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
European Project: 257241,EC:FP7:ERC,ERC-2010-StG_20091028,MESOQMC(2011)
Source :
Physical Review B: Condensed Matter and Materials Physics (1998-2015), Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2016, 93, pp.134506. ⟨10.1103/PhysRevB.93.134506⟩, Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 93, pp.134506. ⟨10.1103/PhysRevB.93.134506⟩
Publication Year :
2016
Publisher :
American Physical Society (APS), 2016.

Abstract

We report on a "source-sink" algorithm which allows one to calculate time-resolved physical quantities from a general nanoelectronic quantum system (described by an arbitrary time-dependent quadratic Hamiltonian) connected to infinite electrodes. Although mathematically equivalent to the non equilibrium Green's function formalism, the approach is based on the scattering wave functions of the system. It amounts to solving a set of generalized Schr\"odinger equations which include an additional "source" term (coming from the time dependent perturbation) and an absorbing "sink" term (the electrodes). The algorithm execution time scales linearly with both system size and simulation time allowing one to simulate large systems (currently around $10^6$ degrees of freedom) and/or large times (currently around $10^5$ times the smallest time scale of the system). As an application we calculate the current-voltage characteristics of a Josephson junction for both short and long junctions, and recover the multiple Andreev reflexion (MAR) physics. We also discuss two intrinsically time-dependent situations: the relaxation time of a Josephson junction after a quench of the voltage bias, and the propagation of voltage pulses through a Josephson junction. In the case of a ballistic, long Josephson junction, we predict that a fast voltage pulse creates an oscillatory current whose frequency is controlled by the Thouless energy of the normal part. A similar effect is found for short junctions, a voltage pulse produces an oscillating current which, in the absence of electromagnetic environment, does not relax.<br />Comment: 13 pages, 12 figures

Details

ISSN :
24699969, 24699950, 10980121, and 1550235X
Volume :
93
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi.dedup.....6a5c21e35fab76e2e1f2b7a58efeaf92
Full Text :
https://doi.org/10.1103/physrevb.93.134506