Back to Search Start Over

Reinforcement learning-enhanced protocols for coherent population-transfer in three-level quantum systems

Authors :
Mauro Paternostro
Luigi Giannelli
Alessandro Ferraro
Elisabetta Paladino
Pierpaolo Sgroi
Jonathon Brown
Gheorghe Sorin Paraoanu
Giuseppe Falci
Queen's University Belfast
University of Catania
Centre of Excellence in Quantum Technology, QTF
Department of Applied Physics
Aalto-yliopisto
Aalto University
Source :
Brown, J, Sgroi, P, Giannelli, L, Paraoanu, G S, Paladino, E, Falci, G, Paternostro, M & Ferraro, A 2021, ' Reinforcement learning-enhanced protocols for coherent population-transfer in three-level quantum systems ', New Journal of Physics, vol. 23, no. 9, 093035 . https://doi.org/10.1088/1367-2630/ac2393, New J. Phys.
Publication Year :
2021

Abstract

openaire: EC/H2020/766900/EU//TEQ Funding Information: Original content from this work may be used under the terms of the . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. EU H2020 framework through Collaborative Projects TEQ 766900 COST Action CA15220 International Mobility Programme DfE-SFI Investigator Programme 15/IA/2864 Royal Society Wolfson Research Fellowship scheme RSWF\R3\183013 Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 EP/T028106/1 Academy of Finland https://doi.org/10.13039/501100002341 QuantERA grant SiUCs 731473 QuantERA Leverhulme Trust Research Project Grant UltraQute RGP-2018-266 Foundational Questions Institute Fund(“Exploring the fundamental limits set by thermodynamics in the quantum regime”) FQXi-IAF19-06 yes � 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft Creative Commons Attribution 4.0 licence Publisher Copyright: © 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. We deploy a combination of reinforcement learning-based approaches and more traditional optimization techniques to identify optimal protocols for population transfer in a multi-level system. We constrain our strategy to the case of fixed coupling rates but time-varying detunings, a situation that would simplify considerably the implementation of population transfer in relevant experimental platforms, such as semiconducting and superconducting ones. Our approach is able to explore the space of possible control protocols to reveal the existence of efficient protocols that, remarkably, differ from (and can be superior to) standard Raman, stimulated Raman adiabatic passage or other adiabatic schemes. The new protocols that we identify are robust against both energy losses and dephasing.

Details

Language :
English
Database :
OpenAIRE
Journal :
Brown, J, Sgroi, P, Giannelli, L, Paraoanu, G S, Paladino, E, Falci, G, Paternostro, M & Ferraro, A 2021, ' Reinforcement learning-enhanced protocols for coherent population-transfer in three-level quantum systems ', New Journal of Physics, vol. 23, no. 9, 093035 . https://doi.org/10.1088/1367-2630/ac2393, New J. Phys.
Accession number :
edsair.doi.dedup.....6a28d39c4925ef2ba1aaec3970d518de