Back to Search Start Over

Discovery of 1-Benzoyl 4-Phenoxypiperidines as Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein–Protein Interaction

Authors :
Kevin B. Teuscher
Haitao Ji
Min Zhang
Zilu Li
Source :
Journal of Medicinal Chemistry. 64:11195-11218
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Structure-based design and optimization were performed to develop small-molecule β-catenin/B-cell lymphoma 9 (BCL9) inhibitors and improve their inhibitory activities. Compound ZL3138 with a novel 1-benzoyl 4-phenoxypiperidine scaffold was discovered to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a Ki of 0.96 μM in AlphaScreen competitive inhibition assays and displayed good selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs. The binding mode of new inhibitors was characterized by structure-activity relationship and site-directed mutagenesis studies. Protein pull-down assays indicate that this series of compounds directly binds with β-catenin. Cellular target engagement and co-immunoprecipitation experiments demonstrate that ZL3138 binds with β-catenin and disrupts the β-catenin/BCL9 interaction without affecting the β-catenin/E-cadherin interaction in living cells. Further cell-based studies show that ZL3138 selectively suppresses transactivation of Wnt/β-catenin signaling, regulates transcription and expression of Wnt target genes, and inhibits the growth of Wnt/β-catenin-dependent cancer cells.

Details

ISSN :
15204804 and 00222623
Volume :
64
Database :
OpenAIRE
Journal :
Journal of Medicinal Chemistry
Accession number :
edsair.doi.dedup.....6a165247bde7e9856af32b91c7339d9b