Back to Search Start Over

Human Kininogen Gene Is Transactivated by the Farnesoid X Receptor

Authors :
Yaroslav Hrywna
Jisong Cui
Richard A. Blevins
John R. Thompson
Jinghua Yu
Annie Zhao
Theresa Zhang
Jane-L. Lew
Nuria de Pedro
Li Huang
Fernando Pelaez
Samuel D. Wright
Source :
Journal of Biological Chemistry. 278:28765-28770
Publication Year :
2003
Publisher :
Elsevier BV, 2003.

Abstract

Human kininogen belongs to the plasma kallikreinkinin system. High molecular weight kininogen is the precursor for two-chain kinin-free kininogen and bradykinin. It has been shown that the two-chain kinin-free kininogen has the properties of anti-adhesion, anti-platelet aggregation, and anti-thrombosis, whereas bradykinin is a potent vasodilator and mediator of inflammation. In this study we show that the human kininogen gene is strongly up-regulated by agonists of the farnesoid X receptor (FXR), a nuclear receptor for bile acids. In primary human hepatocytes, both the endogenous FXR agonist chenodeoxycholate and synthetic FXR agonist GW4064 increased kininogen mRNA with a maximum induction of 8-10-fold. A more robust induction of kininogen expression was observed in HepG2 cells, where kininogen mRNA was increased by chenodeoxycholate or GW4064 up to 130-140-fold as shown by real time PCR. Northern blot analysis confirmed the up-regulation of kininogen expression by FXR agonists. To determine whether kininogen is a direct target of FXR, we examined the sequence of the kininogen promoter and identified a highly conserved FXR response element (inverted repeat, IR-1) in the proximity of the kininogen promoter (-66/-54). FXR/RXRalpha heterodimers specifically bind to this IR-1. A construct of a minimal promoter with the luciferase reporter containing this IR-1 was transactivated by FXR. Deletion or mutation of this IR-1 abolished FXR-mediated promoter activation, indicating that this IR-1 element is responsible for the promoter transactivation by FXR. We conclude that kininogen is a novel and direct target of FXR, and bile acids may play a role in the vasodilation and anti-coagulation processes.

Details

ISSN :
00219258
Volume :
278
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....69f0fbe5d6b2a857d4f1fa2d4fb6760f