Back to Search Start Over

A quantitative gibberellin signalling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem

Authors :
Bihai Shi
Amelia Felipo-Benavent
Guillaume Cerutti
Carlos Galvan-Ampudia
Lucas Jilli
Geraldine Brunoud
Jérome Mutterer
Elody Vallet
Lali Sakvarelidze-Achard
Jean-Michel Davière
Alejandro Navarro-Galiano
Ankit Walia
Shani Lazary
Jonathan Legrand
Roy Weinstain
Alexander M. Jones
Salomé Prat
Patrick Achard
Teva Vernoux
Reproduction et développement des plantes (RDP)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Institut de biologie moléculaire des plantes (IBMP)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Simulation et Analyse de la morphogenèse in siliCo (MOSAIC)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signalling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this novel degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signalling activity in the SAM. We show that high GA signalling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organisation of internodes, thus contributing to internode specification in the SAM.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....69ee69c5c85616e5a235402402554812