Back to Search Start Over

C-terminal tail phosphorylation of N-formyl peptide receptor: differential recognition of two neutrophil chemoattractant receptors by monoclonal antibodies NFPR1 and NFPR2

Authors :
Jamal Stie
Jeannie M. Gripentrog
Heini M. Miettinen
Algirdas J. Jesaitis
Marcia H. Riesselman
Edward A. Dratz
Connie I. Lord
Ross M. Taylor
Brendan Mumey
Source :
Journal of immunology (Baltimore, Md. : 1950). 179(4)
Publication Year :
2007

Abstract

The N-formyl peptide receptor (FPR), a G protein-coupled receptor that binds proinflammatory chemoattractant peptides, serves as a model receptor for leukocyte chemotaxis. Recombinant histidine-tagged FPR (rHis-FPR) was purified in lysophosphatidyl glycerol (LPG) by Ni2+-NTA agarose chromatography to >95% purity with high yield. MALDI-TOF mass analysis (>36% sequence coverage) and immunoblotting confirmed the identity as FPR. The rHis-FPR served as an immunogen for the production of 2 mAbs, NFPR1 and NFPR2, that epitope map to the FPR C-terminal tail sequences, 305-GQDFRERLI-313 and 337-NSTLPSAEVE-346, respectively. Both mAbs specifically immunoblotted rHis-FPR and recombinant FPR (rFPR) expressed in Chinese hamster ovary cells. NFPR1 also recognized recombinant FPRL1, specifically expressed in mouse L fibroblasts. In human neutrophil membranes, both Abs labeled a 45–75 kDa species (peak Mr ∼60 kDa) localized primarily in the plasma membrane with a minor component in the lactoferrin-enriched intracellular fractions, consistent with FPR size and localization. NFPR1 also recognized a band of Mr ∼40 kDa localized, in equal proportions to the plasma membrane and lactoferrin-enriched fractions, consistent with FPRL1 size and localization. Only NFPR2 was capable of immunoprecipitation of rFPR in detergent extracts. The recognition of rFPR by NFPR2 is lost after exposure of cellular rFPR to f-Met-Leu-Phe (fMLF) and regained after alkaline phosphatase treatment of rFPR-bearing membranes. In neutrophils, NFPR2 immunofluorescence was lost upon fMLF stimulation. Immunoblotting ∼60 kDa species, after phosphatase treatment of fMLF-stimulated neutrophil membranes, was also enhanced. We conclude that the region 337–346 of FPR becomes phosphorylated after fMLF activation of rFPR-expressing Chinese hamster ovary cells and neutrophils.

Details

ISSN :
00221767
Volume :
179
Issue :
4
Database :
OpenAIRE
Journal :
Journal of immunology (Baltimore, Md. : 1950)
Accession number :
edsair.doi.dedup.....69ed844f10c38ae538ed7a442c900fd6